The two lines y = x and x = -4 intersect on the coordinate plane.
The two lines y = x and x = -4 intersect on the coordinate plane. If z represents the area of the figure formed by the intersecting lines and the x-axis, what is the side length E of a cube whose surface area is equal to 6z?
Answer/Solution
E=2√2
Steps/Work
800score Official Solution:
The first step to solving this problem is to actually graph the two lines. The lines intersect at the point (-4, -4) and form a right triangle whose base length and height are both equal to 4. As you know, the area of a triangle is equal to one half the product of its base length and height: A = (1/2)bh = (1/2)(4 × 4) = 8; so z = 8.
The next step requires us to find the length of a side of a cube that has a face area equal to 8. As you know the 6 faces of a cube are squares. So, we can reduce the problem to finding the length of the side of a square that has an area of 8. Since the area of a square is equal to s², where s is the length of one of its side, we can write and solve the equation s² = 8. Clearly s = √8 = 2√2 , oranswer choice (D).
The first step to solving this problem is to actually graph the two lines. The lines intersect at the point (-4, -4) and form a right triangle whose base length and height are both equal to 4. As you know, the area of a triangle is equal to one half the product of its base length and height: A = (1/2)bh = (1/2)(4 × 4) = 8; so z = 8.
The next step requires us to find the length of a side of a cube that has a face area equal to 8. As you know the 6 faces of a cube are squares. So, we can reduce the problem to finding the length of the side of a square that has an area of 8. Since the area of a square is equal to s², where s is the length of one of its side, we can write and solve the equation s² = 8. Clearly s = √8 = 2√2 , oranswer choice (D).